## Exercise Sheet Solutions #1

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

**P1.** (Problem 2.2.) Prove that the extended real line  $[-\infty, \infty]$  is homeomorphic to the closed unit interval [0, 1].

**Solution:** As [-1,1] is homeomorphic with [0,1], we prove the statement for the interval [-1,1] rather than [0,1] (just for the sake of notation). We define the function  $\varphi:[-\infty,\infty]\to[-1,1]$  as

$$\varphi(t) = \begin{cases} 1 - \frac{1}{2t} & \text{if } t \in [1, \infty] \\ t/2 & \text{if } t \in (-1, 1) \\ -1 + \frac{1}{2t} & \text{if } t = 0 \end{cases}$$
 (1)

**Remark:** Another option is to define the function  $\psi: [-\infty, \infty] \to [-\pi/2, \pi/2]$  given by  $\psi(t) = \arctan(t)$ .

Notice that  $\varphi \mid_{(-\infty,\infty)}: (-\infty,\infty) \to (-1,1)$  is clearly an homemorphism. For the extremal points, it is enough to notice that  $\varphi$  is bijective with  $\varphi(\infty) = 1$  and  $\varphi(-\infty) = -1$ , therefore (by the definition of the topology in  $[-\infty,\infty]$ ) we have that  $\varphi$  is continuous. Moreover, is an homeomorphism (this can be check manually justifying analogously for the inverse, or noticing that  $\varphi$  is a continuous bijective map between compact and Hausdorff spaces).

**P2.** (Problem 2.3.) Let  $(x_n)_{n\in\mathbb{N}}$  be a sequence in  $[-\infty,\infty]$ , and let  $c\in\mathbb{R}$ . If  $(x_n)_{n\in\mathbb{N}}$  converges to an extended real number, then the sequence  $(cx_n)_{n\in\mathbb{N}}$  also converges, and

$$\lim_{n \to \infty} (cx_n) = c \cdot \lim_{n \to \infty} x_n. \tag{2}$$

**Solution:** If  $(x_n)_{n\in\mathbb{N}}$  is bounded, then the convergence as a sequence in  $[-\infty,\infty]$  reduces to convergence in  $(-\infty,\infty)$ , in which we already know that Eq. (2) holds. Otherwise, as  $(x_n)_{n\in\mathbb{N}}$  is a convergent sequence, we have either  $x_n \to \infty$  as  $n \to \infty$  or  $x_n \to -\infty$  as  $n \to \infty$ . Assume without loss of generality that  $x_n \to \infty$  as  $n \to \infty$ . If c = 0 then  $cx_n = 0$  for all  $n \in \mathbb{N}$ , and  $c \cdot \lim_{n \to \infty} x_n = 0$ , so Eq. (2) holds. If  $c \neq 0$ , we can assume without loss of generality that c > 0. So, we have that

$$c \cdot \lim_{n \to \infty} x_n = c \cdot \infty = \infty.$$

For the left-hand side expression, it is enough to justify that  $(cx_n)_{n\in\mathbb{N}}$  is a sequence that goes to  $\infty$ . Indeed, for each  $M\in\mathbb{N}$ , there is  $N\in\mathbb{N}$  such that for every  $n\geq N,\ x_n\in[M,\infty]$ . Hence, taking M/c instead of M, the same goes for the sequence  $(cx_n)_{n\in\mathbb{N}}$ , and therefore  $\lim_{n\to\infty} cx_n = \infty$ , concluding.

- **P3.** Let X, Y be two sets and  $f: X \to Y$  a function.
  - (a) Prove that if  $\mathcal{F}_Y \subseteq P(Y)$  is a  $\sigma$ -algebra, then  $\mathcal{F}_X := \{f^{-1}(A) \mid A \in \mathcal{F}_Y\}$  is a  $\sigma$ -algebra.

**Solution:** First,  $X = f^{-1}(Y)$ , so we have that  $X \in \mathcal{F}_X$ . Second, for  $A \in \mathcal{F}_Y$ , we have that  $f^{-1}(A)^c = f^{-1}(A^c) \in \mathcal{F}_X$  because  $A^c \in \mathcal{F}_Y$ . Finally, for  $(B_n)_{n \in \mathbb{N}}$  a countable family of elements in  $\mathcal{F}_X$ , we write  $B_n = f^{-1}(A_n)$  for  $A_n \in \mathcal{F}_Y$  for each  $n \in \mathbb{N}$ . Then, we write

$$\bigcup_{n\in\mathbb{N}} B_n = \bigcup_{n\in\mathbb{N}} f^{-1}(A_n) = f^{-1}(\bigcup_{n\in\mathbb{N}} A_n), \tag{3}$$

and as  $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{F}_Y$ , we have that  $f^{-1}(\bigcup_{n\in\mathbb{N}} A_n) \in \mathcal{F}_X$ . In consequence,  $\mathcal{F}_X$  is a sigma algebra.

**(b)** Prove that for  $\mathcal{C} \subseteq P(Y)$ , we have that  $\sigma(f^{-1}(\mathcal{C})) = f^{-1}(\sigma(\mathcal{C}))$ .

**Solution:** First, as  $\mathcal{C} \subseteq \sigma(\mathcal{C})$ , we have that  $f^{-1}(\mathcal{C}) \subseteq f^{-1}(\sigma(\mathcal{C}))$ . By part (a), we know that  $f^{-1}(\sigma(\mathcal{C}))$  is a sigma algebra, so we have

$$\sigma(f^{-1}(\mathcal{C})) \subseteq f^{-1}(\sigma(\mathcal{C})).$$

For showing the reverse inclusion, we define the set

$$\mathcal{D} = \{ D \subseteq Y \mid f^{-1}(D) \in \sigma(f^{-1}(\mathcal{C})) \}.$$

Observe that  $\sigma(\mathcal{C}) \subseteq \mathcal{D}$  is equivalent to  $f^{-1}(\sigma(\mathcal{C})) \subseteq \sigma(f^{-1}(\mathcal{C}))$ . In consequence, as clearly  $\mathcal{C} \subseteq \mathcal{D}$ , it is enough to show that  $\mathcal{D}$  is a sigma algebra. For this, first observe that  $f^{-1}(Y) = X \in \sigma(f^{-1}(\mathcal{C}))$  by definition of sigma algebra. Second, for  $(A_i)_{i \in \mathbb{N}} \subseteq \mathcal{D}$  we have that

$$f^{-1}(\bigcup_{i\in\mathbb{N}}A_i)=\bigcup_{i\in\mathbb{N}}f^{-1}(A_i)\in\sigma(f^{-1}(\mathcal{C})),$$

because of the definition of sigma algebra and  $A_i \in \mathcal{D} \iff f^{-1}(A_i) \in \sigma(f^{-1}(\mathcal{C}))$  for each  $i \in \mathbb{N}$ . Finally, for  $A \in \mathcal{D}$ , we have that

$$f^{-1}(A_i^c) = f^{-1}(A_i)^c \in \sigma(f^{-1}(\mathcal{C})),$$

given that the complement of an element of a sigma algebra is in the sigma algebra. This proves that  $\mathcal{D}$  is a sigma algebra, concluding.

**P4.** Let  $(X, \mathcal{T}, \mu)$  be a finite measure space, and let  $\mathcal{A} \subseteq \mathcal{P}(X)$  be an algebra. Show that if  $\mathcal{A}$  generates  $\mathcal{T}$ , then for every  $B \in \mathcal{T}$  and for every  $\epsilon > 0$ , there exists  $A \in \mathcal{A}$  such that  $\mu(A\Delta B) \leq \epsilon$ .

**Solution:** Notice that what we want to prove can be reformulated as

$$\sigma(\mathcal{A}) \subseteq \{ B \subseteq X \mid \forall \epsilon > 0, \exists A \in \mathcal{A}, \mu(A\Delta B) \le \epsilon \}.$$
 (4)

Let us call  $\mathcal{B}$  the right-hand side set. It is straightforward to see that  $\mathcal{A} \subseteq \mathcal{B}$ , so it is enough to show that  $\mathcal{B}$  is a sigma algebra to conclude. First,  $X \in \mathcal{A} \subseteq \mathcal{B}$ . For  $(B_i)_{i \in \mathbb{N}} \subseteq \mathcal{B}$ , let  $\epsilon > 0$ . We have that for each  $\epsilon_i > 0$ , there is  $A_i \in \mathcal{A}$  such that  $\mu(A_i \Delta B_i) \leq \epsilon_i$ . Given that  $\bigcup_{i=1}^N B_i \nearrow \bigcup_{i=1}^\infty B_i$  and the fact that the measure is finite, we have that for given  $\epsilon_0 > 0$  there is N such that

$$\mu(\bigcup_{i=1}^{\infty} B_i \Delta \bigcup_{i=1}^{N} B_i) = \mu(\bigcup_{i=1}^{\infty} B_i) - \mu(\bigcup_{i=1}^{N} B_i) \le \epsilon_0.$$
 (5)

Thus, we have the approximation

$$\mu(\bigcup_{i \in N} A_i \Delta \bigcup_{i \in \mathbb{N}} B_i) \le \mu(\bigcup_{i \in \mathbb{N}} B_i \Delta \bigcup_{i \in N} B_i) + \mu(\bigcup_{i \in N} A_i \Delta \bigcup_{i \in N} B_i)$$

$$\le \epsilon_0 + \mu(\bigcup_{i \in N} A_i \Delta B_i) \le \epsilon_0 + \sum_{i \in N} \mu(A_i \Delta B_i)$$

$$\le \sum_{i=0}^{N} \epsilon_i,$$

so, taking  $\sum_{i\in\mathbb{N}_0} \epsilon_i \leq \epsilon$  (for example  $\epsilon_i = \epsilon/2^{i+1}$ ) and the fact that  $\bigcup_{n=1}^N A_i \in \mathcal{A}$  by definition of algebra, we conclude that  $\bigcup_{i\in\mathbb{N}} B_i \in \mathcal{B}$ . Finally, for  $B \in \mathcal{B}$ , we need to see that  $B^c \in \mathcal{B}$ . Indeed, for  $\epsilon > 0$ , we take  $A \in \mathcal{A}$  such that  $\mu(A\Delta B) \leq \epsilon$ . Then

$$\mu(A^c \Delta B^c) = \mu((A^c \cup B^c) \cap (A^c \cap B^c)^c) = \mu((A \cup B) \cap (A \cup B)^c) = \mu(A \Delta B) \le \epsilon. \tag{6}$$

Thus, we conclude that  $\mathcal{B}$  is a sigma algebra.

**P5.** Let X a set. We say that  $S \subseteq \mathcal{P}(X)$  is a semialgebra if

- $\emptyset, X \in \mathcal{S}$ ,
- if  $A, B \in \mathcal{S}$  then  $A \cap B \in \mathcal{S}$ , and
- if  $A, B \in \mathcal{S}$ , then  $A \setminus B = \bigsqcup_{i=1}^n C_i$  for some  $C_i \in \mathcal{S}$ .

Show that if S is a semialgebra, then

$$\mathcal{A}(S) = \left\{ \bigcup_{i=1}^{n} A_i \mid n \in \mathbb{N}, A_i \in \mathcal{S} \right\}.$$

Can we replace | | by | |?

**Solution:** Let us denote  $\mathcal{B}$  the right-hand side set. It is clear that  $\mathcal{B} \subseteq \mathcal{A}(S)$  given that algebras are closed under finite union. For the other inclusion, we observe that  $S \subseteq \mathcal{B}$  so it is enough to prove that  $\mathcal{B}$  is an algebra. Indeed, by definition  $X \in S$ , so  $X \in \mathcal{B}$ . It is also clear that  $\mathcal{B}$  is closed under intersection, given that if  $A_1, ..., A_n, B_1, ..., B_m \in S$  then

$$\left(\bigcup_{i=1}^{n} A_i\right) \cap \left(\bigcup_{j=1}^{m} B_j\right) = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} A_i \cap B_{j \in S} \in \mathcal{B}.$$

Hence, it is enough to prove that  $\mathcal{B}$  is closed under taking complement. Indeed, for  $A_1, ... A_n \in S$  we have that

$$\left(\bigcup_{j=1}^n A_j\right)^c = \bigcap_{j=1}^n A_j^c.$$

So, if we prove that  $A_j^c \in \mathcal{B}$  we are done, given that  $\mathcal{B}$  is closed under intersection. Thus, we can assume without loss of generality that n=1. On the other hand, as  $A:=A_1 \in S$ , there is  $m \in \mathbb{N}$  and  $C_1, ..., C_m \in S$  such that  $A^c = \bigcup_{i=1}^m C_i$ . Thus

$$A^c = \bigcup_{i=1}^m C_i \in \mathcal{B},$$

hence, we conclude that  $\mathcal B$  is closed under taking complement and therefore an algebra.