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P1. (Problem 2.2.) Prove that the extended real line [−∞,∞] is homeomorphic to the closed unit
interval [0, 1].

Solution: As [−1, 1] is homeomorphic with [0, 1], we prove the statement for the interval [−1, 1]
rather than [0, 1] (just for the sake of notation). We define the function φ : [−∞,∞] → [−1, 1]
as

φ(t) =


1− 1

2t if t ∈ [1,∞]

t/2 if t ∈ (−1, 1)

−1 + 1
2t if t = 0

. (1)

Remark: Another option is to define the function ψ : [−∞,∞] → [−π/2, π/2] given by
ψ(t) = arctan(t).

Notice that φ |(−∞,∞): (−∞,∞) → (−1, 1) is clearly an homemorphism. For the extremal
points, it is enough to notice that φ is bijective with φ(∞) = 1 and φ(−∞) = −1, therefore
(by the definition of the topology in [−∞,∞]) we have that φ is continuous. Moreover, is an
homeomorphism (this can be check manually justifying analogously for the inverse, or noticing
that φ is a continuous bijective map between compact and Hausdorff spaces).

P2. (Problem 2.3.) Let (xn)n∈N be a sequence in [−∞,∞], and let c ∈ R. If (xn)n∈N converges to
an extended real number, then the sequence (cxn)n∈N also converges, and

ĺım
n→∞

(cxn) = c · ĺım
n→∞

xn. (2)

Solution: If (xn)n∈N is bounded, then the convergence as a sequence in [−∞,∞] reduces to
convergence in (−∞,∞), in which we already know that Eq. (2) holds. Otherwise, as (xn)n∈N
is a convergent sequence, we have either xn → ∞ as n → ∞ or xn → −∞ as n → ∞. Assume
without loss of generality that xn → ∞ as n → ∞. If c = 0 then cxn = 0 for all n ∈ N, and
c · ĺımn→∞ xn = 0, so Eq. (2) holds. If c ̸= 0, we can assume without loss of generality that
c > 0. So, we have that

c · ĺım
n→∞

xn = c · ∞ = ∞.

For the left-hand side expression, it is enough to justify that (cxn)n∈N is a sequence that goes
to ∞. Indeed, for each M ∈ N, there is N ∈ N such that for every n ≥ N , xn ∈ [M,∞].
Hence, taking M/c instead of M , the same goes for the sequence (cxn)n∈N, and therefore
ĺımn→∞ cxn = ∞, concluding.

P3. Let X,Y be two sets and f : X → Y a function.

(a) Prove that if FY ⊆ P (Y ) is a σ-algebra, then FX := {f−1(A) | A ∈ FY } is a σ-
algebra.

Solution: First, X = f−1(Y ), so we have that X ∈ FX . Second, for A ∈ FY , we have
that f−1(A)c = f−1(Ac) ∈ FX because Ac ∈ FY . Finally, for (Bn)n∈N a countable family
of elements in FX , we write Bn = f−1(An) for An ∈ FY for each n ∈ N. Then, we write⋃

n∈N
Bn =

⋃
n∈N

f−1(An) = f−1(
⋃
n∈N

An), (3)



and as
⋃

n∈NAn ∈ FY , we have that f−1(
⋃

n∈NAn) ∈ FX . In consequence, FX is a sigma
algebra.

(b) Prove that for C ⊆ P (Y ), we have that σ(f−1(C)) = f−1(σ(C)).

Solution: First, as C ⊆ σ(C), we have that f−1(C) ⊆ f−1(σ(C)). By part (a), we know
that f−1(σ(C)) is a sigma algebra, so we have

σ(f−1(C)) ⊆ f−1(σ(C)).

For showing the reverse inclusion, we define the set

D = {D ⊆ Y | f−1(D) ∈ σ(f−1(C))}.

Observe that σ(C) ⊆ D is equivalent to f−1(σ(C)) ⊆ σ(f−1(C)). In consequence, as clearly
C ⊆ D, it is enough to show that D is a sigma algebra. For this, first observe that
f−1(Y ) = X ∈ σ(f−1(C)) by definition of sigma algebra. Second, for (Ai)i∈N ⊆ D we have
that

f−1(
⋃
i∈N

Ai) =
⋃
i∈N

f−1(Ai) ∈ σ(f−1(C)),

because of the definition of sigma algebra and Ai ∈ D ⇐⇒ f−1(Ai) ∈ σ(f−1(C)) for each
i ∈ N. Finally, for A ∈ D, we have that

f−1(Ac
i ) = f−1(Ai)

c ∈ σ(f−1(C)),

given that the complement of an element of a sigma algebra is in the sigma algebra. This
proves that D is a sigma algebra, concluding.

P4. Let (X, T , µ) be a finite measure space, and let A ⊆ P(X) be an algebra. Show that if A
generates T , then for every B ∈ T and for every ϵ > 0, there exists A ∈ A such that µ(A∆B) ≤
ϵ.

Solution: Notice that what we want to prove can be reformulated as

σ(A) ⊆ {B ⊆ X | ∀ϵ > 0,∃A ∈ A, µ(A∆B) ≤ ϵ} . (4)

Let us call B the right-hand side set. It is straightforward to see that A ⊆ B, so it is enough
to show that B is a sigma algebra to conclude. First, X ∈ A ⊆ B. For (Bi)i∈N ⊆ B, let
ϵ > 0. We have that for each ϵi > 0, there is Ai ∈ A such that µ(Ai∆Bi) ≤ ϵi. Given that⋃N

i=1Bi ↗
⋃∞

i=1Bi and the fact that the measure is finite, we have that for given ϵ0 > 0 there
is N such that

µ(

∞⋃
i=1

Bi∆

N⋃
i=1

Bi) = µ(

∞⋃
i=1

Bi)− µ(

N⋃
i=1

Bi) ≤ ϵ0. (5)
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Thus, we have the approximation

µ(
⋃
i∈N

Ai∆
⋃
i∈N

Bi) ≤ µ(
⋃
i∈N

Bi∆
⋃
i∈N

Bi) + µ(
⋃
i∈N

Ai∆
⋃
i∈N

Bi)

≤ ϵ0 + µ(
⋃
i∈N

Ai∆Bi) ≤ ϵ0 +
∑
i∈N

µ(Ai∆Bi)

≤
N∑
i=0

ϵi,

so, taking
∑

i∈N0
ϵi ≤ ϵ (for example ϵi = ϵ/2i+1) and the fact that

⋃N
n=1Ai ∈ A by definition of

algebra,we conclude that
⋃

i∈NBi ∈ B. Finally, for B ∈ B, we need to see that Bc ∈ B. Indeed,
for ϵ > 0, we take A ∈ A such that µ(A∆B) ≤ ϵ. Then

µ(Ac∆Bc) = µ((Ac ∪Bc) ∩ (Ac ∩Bc)c) = µ((A ∪B) ∩ (A ∪B)c) = µ(A∆B) ≤ ϵ. (6)

Thus, we conclude that B is a sigma algebra.

P5. Let X a set. We say that S ⊆ P(X) is a semialgebra if

• ∅, X ∈ S,
• if A,B ∈ S then A ∩B ∈ S, and
• if A,B ∈ S, then A \B =

⊔n
i=1Ci for some Ci ∈ S.

Show that if S is a semialgebra, then

A(S) =

{
n⋃

i=1

Ai | n ∈ N, Ai ∈ S

}
.

Can we replace
⋃

by
⊔
?

Solution: Let us denote B the right-hand side set. It is clear that B ⊆ A(S) given that
algebras are closed under finite union. For the other inclusion, we observe that S ⊆ B so it is
enough to prove that B is an algebra. Indeed, by definition X ∈ S, so X ∈ B. It is also clear
that B is closed under intersection, given that if A1, ..., An, B1, ..., Bm ∈ S then(

n⋃
i=1

Ai

)
∩

 m⋃
j=1

Bj

 =
n⋃

i=1

m⋃
j=1

Ai ∩Bj∈S ∈ B.

Hence, it is enough to prove that B is closed under taking complement. Indeed, for A1, ...An ∈ S
we have that  n⋃

j=1

Aj

c

=
n⋂

j=1

Ac
j .

So, if we prove that Ac
j ∈ B we are done, given that B is closed under intersection. Thus, we

can assume without loss of generality that n = 1. On the other hand, as A := A1 ∈ S, there is
m ∈ N and C1, ..., Cm ∈ S such that Ac =

⋃m
i=1Ci. Thus

Ac =
m⋃
i=1

Ci ∈ B,
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hence, we conclude that B is closed under taking complement and therefore an algebra.

4


